Abstract:Average-reward reinforcement learning offers a principled framework for long-term decision-making by maximizing the mean reward per time step. Although Q-learning is a widely used model-free algorithm with established sample complexity in discounted and finite-horizon Markov decision processes (MDPs), its theoretical guarantees for average-reward settings remain limited. This work studies a simple but effective Q-learning algorithm for average-reward MDPs with finite state and action spaces under the weakly communicating assumption, covering both single-agent and federated scenarios. For the single-agent case, we show that Q-learning with carefully chosen parameters achieves sample complexity $\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|\|h^{\star}\|_{\mathsf{sp}}^3}{\varepsilon^3}\right)$, where $\|h^{\star}\|_{\mathsf{sp}}$ is the span norm of the bias function, improving previous results by at least a factor of $\frac{\|h^{\star}\|_{\mathsf{sp}}^2}{\varepsilon^2}$. In the federated setting with $M$ agents, we prove that collaboration reduces the per-agent sample complexity to $\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|\|h^{\star}\|_{\mathsf{sp}}^3}{M\varepsilon^3}\right)$, with only $\widetilde{O}\left(\frac{\|h^{\star}\|_{\mathsf{sp}}}{\varepsilon}\right)$ communication rounds required. These results establish the first federated Q-learning algorithm for average-reward MDPs, with provable efficiency in both sample and communication complexity.
Abstract:Clinical Decision Support Systems (CDSSs) provide reasoning and inquiry guidance for physicians, yet they face notable challenges, including high maintenance costs and low generalization capability. Recently, Large Language Models (LLMs) have been widely adopted in healthcare due to their extensive knowledge reserves, retrieval, and communication capabilities. While LLMs show promise and excel at medical benchmarks, their diagnostic reasoning and inquiry skills are constrained. To mitigate this issue, we propose (1) Clinical Diagnostic Reasoning Data (CDRD) structure to capture abstract clinical reasoning logic, and a pipeline for its construction, and (2) the Dr. Assistant, a clinical diagnostic model equipped with clinical reasoning and inquiry skills. Its training involves a two-stage process: SFT, followed by RL with a tailored reward function. We also introduce a benchmark to evaluate both diagnostic reasoning and inquiry. Our experiments demonstrate that the Dr. Assistant outperforms open-source models and achieves competitive performance to closed-source models, providing an effective solution for clinical diagnostic inquiry guidance.
Abstract:Recent advancements in vision-language-action (VLA) models have shown promise in robotic manipulation, yet they continue to struggle with long-horizon, multi-step tasks. Existing methods lack internal reasoning mechanisms that can identify task-relevant interaction cues or track progress within a subtask, leading to critical execution errors such as repeated actions, missed steps, and premature termination. To address these challenges, we introduce PALM, a VLA framework that structures policy learning around interaction-centric affordance reasoning and subtask progress cues. PALM distills complementary affordance representations that capture object relevance, contact geometry, spatial placements, and motion dynamics, and serve as task-relevant anchors for visuomotor control. To further stabilize long-horizon execution, PALM predicts continuous within-subtask progress, enabling seamless subtask transitions. Across extensive simulation and real-world experiments, PALM consistently outperforms baselines, achieving a 91.8% success rate on LIBERO-LONG, a 12.5% improvement in average length on CALVIN ABC->D, and a 2x improvement over real-world baselines across three long-horizon generalization settings.
Abstract:Deploying models, especially large language models (LLMs), is becoming increasingly attractive to a broader user base, including those without specialized expertise. However, due to the resource constraints of certain hardware, maintaining high accuracy with larger model while meeting the hardware requirements remains a significant challenge. Model quantization technique helps mitigate memory and compute bottlenecks, yet the added complexities of tuning and deploying quantized models further exacerbates these challenges, making the process unfriendly to most of the users. We introduce the Hardware-Aware Quantization Agent (HAQA), an automated framework that leverages LLMs to streamline the entire quantization and deployment process by enabling efficient hyperparameter tuning and hardware configuration, thereby simultaneously improving deployment quality and ease of use for a broad range of users. Our results demonstrate up to a 2.3x speedup in inference, along with increased throughput and improved accuracy compared to unoptimized models on Llama. Additionally, HAQA is designed to implement adaptive quantization strategies across diverse hardware platforms, as it automatically finds optimal settings even when they appear counterintuitive, thereby reducing extensive manual effort and demonstrating superior adaptability. Code will be released.
Abstract:Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
Abstract:Higher-order ODE solvers have become a standard tool for accelerating diffusion probabilistic model (DPM) sampling, motivating the widespread view that first-order methods are inherently slower and that increasing discretization order is the primary path to faster generation. This paper challenges this belief and revisits acceleration from a complementary angle: beyond solver order, the placement of DPM evaluations along the reverse-time dynamics can substantially affect sampling accuracy in the low-neural function evaluation (NFE) regime. We propose a novel training-free, first-order sampler whose leading discretization error has the opposite sign to that of DDIM. Algorithmically, the method approximates the forward-value evaluation via a cheap one-step lookahead predictor. We provide theoretical guarantees showing that the resulting sampler provably approximates the ideal forward-value trajectory while retaining first-order convergence. Empirically, across standard image generation benchmarks (CIFAR-10, ImageNet, FFHQ, and LSUN), the proposed sampler consistently improves sample quality under the same NFE budget and can be competitive with, and sometimes outperform, state-of-the-art higher-order samplers. Overall, the results suggest that the placement of DPM evaluations provides an additional and largely independent design angle for accelerating diffusion sampling.
Abstract:This paper introduces Implicit-JSCC, a novel overfitted joint source-channel coding paradigm that directly optimizes channel symbols and a lightweight neural decoder for each source. This instance-specific strategy eliminates the need for training datasets or pre-trained models, enabling a storage-free, modality-agnostic solution. As a low-complexity alternative, Implicit-JSCC achieves efficient image transmission with around 1000x lower decoding complexity, using as few as 607 model parameters and 641 multiplications per pixel. This overfitted design inherently addresses source generalizability and achieves state-of-the-art results in the high SNR regimes, underscoring its promise for future communication systems, especially streaming scenarios where one-time offline encoding supports multiple online decoding.
Abstract:The "one-shot" technique represents a distinct and sophisticated aesthetic in filmmaking. However, its practical realization is often hindered by prohibitive costs and complex real-world constraints. Although emerging video generation models offer a virtual alternative, existing approaches typically rely on naive clip concatenation, which frequently fails to maintain visual smoothness and temporal coherence. In this paper, we introduce DreaMontage, a comprehensive framework designed for arbitrary frame-guided generation, capable of synthesizing seamless, expressive, and long-duration one-shot videos from diverse user-provided inputs. To achieve this, we address the challenge through three primary dimensions. (i) We integrate a lightweight intermediate-conditioning mechanism into the DiT architecture. By employing an Adaptive Tuning strategy that effectively leverages base training data, we unlock robust arbitrary-frame control capabilities. (ii) To enhance visual fidelity and cinematic expressiveness, we curate a high-quality dataset and implement a Visual Expression SFT stage. In addressing critical issues such as subject motion rationality and transition smoothness, we apply a Tailored DPO scheme, which significantly improves the success rate and usability of the generated content. (iii) To facilitate the production of extended sequences, we design a Segment-wise Auto-Regressive (SAR) inference strategy that operates in a memory-efficient manner. Extensive experiments demonstrate that our approach achieves visually striking and seamlessly coherent one-shot effects while maintaining computational efficiency, empowering users to transform fragmented visual materials into vivid, cohesive one-shot cinematic experiences.
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Generative AI tools such as ChatGPT now provide novice programmers with unprecedented access to instant, personalized support. While this holds clear promise, their influence on students' metacognitive processes remains underexplored. Existing work has largely focused on correctness and usability, with limited attention to whether and how students' use of AI assistants supports or bypasses key metacognitive processes. This study addresses that gap by analyzing student-AI interactions through a metacognitive lens in university-level programming courses. We examined more than 10,000 dialogue logs collected over three years, complemented by surveys of students and educators. Our analysis focused on how prompts and responses aligned with metacognitive phases and strategies. Synthesizing these findings across data sources, we distill design considerations for AI-powered coding assistants that aim to support rather than supplant metacognitive engagement. Our findings provide guidance for developing educational AI tools that strengthen students' learning processes in programming education.